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STIELTJES POLYNOMIALS AND LAGRANGE INTERPOLATION 

SVEN EHRICH AND GIUSEPPE MASTROIANNI 

ABSTRACT. Bounds are proved for the Stieltjes polynomial En+?i, and lower 
bounds are proved for the distances of consecutive zeros of the Stieltjes poly- 
nomials and the Legendre polynomials P,. This sharpens a known interlacing 
result of Szego. As a byproduct, bounds are obtained for the Geronimus poly- 
nomials G,. Applying these results, convergence theorems are proved for the 
Lagrange interpolation process with respect to the zeros of E+?,v and for the 
extended Lagrange interpolation process with respect to the zeros of PEn?+l 
in the uniform and weighted LP norms. The corresponding Lebesgue constants 
are of optimal order. 

1. INTRODUCTION 

Let Pn be the Legendre polynomial, normalized by Pn(1) = 1. The polynomials 
E,+1 defined (up to a multiplicative constant) by 

En+ 1(X) Pn(X) Xkdx = 01 k = O,l,1...,n n > 1, 

were introduced by Stieltjes more than one hundred years ago. In 1934 Szegb [36], 
following Stieltjes idea, introduced the wider class of polynomials En1,) defined by 

1 

J wA(x)E( ?i(x)PQA)(X)xk dx = O, k= O,1,...,rn, n> 1> 

where wx(x) = (1 - x2)1-1/2, A > -1, and Pn)) is the Gegenbauer polynomial. 

In [36] Szeg6 proved, among other results, that for 0 < A < 2 the zeros of EnQ1 

interlace with those of Pn\). This proves and generalizes a conjecture of Stieltjes 
for the case A = 2. After Szeg6's paper, Stieltjes' idea seemed to have had no 
further development for a long time. But in 1964 Kronrod, urged by the aim of 
estimating the error of the Gauss-Legendre quadrature formula, introduced the 
extended quadrature formula, now well known as the Gauss-Kronrod rule 

1 n n+1 

(1) ] f(x) dx = ZA f(XAv,n Mvn) + E ?: R2n+,ni(f)2 
-1 v=l ,u=l 

where x>,n are the zeros of Pn and the nodes (/,,n+l as well as the weights Av,n and 
BGK 1 are chosen such that the formula has algebraic degree of precision > 3n + 1, 
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i.e. RSGKr (p) 0 if p E P3n+1 (Pk is the space of all algebraic polynomials of degree 
at most k). Some years later Barrucand [1] observed that &,,,n+j are precisely the 
zeros of the Stieltjes polynomials En+, In the second half of the seventies, G. 
Monegato in [25], proved th-at the interlacing property of the zeros of En+1 with 
those of Pn is equivalent to the positivity of the coefficients BGK+ and then proved 
that the Gauss-Kronrod formula has positive weights even if it is constructed with 
respect to the weight wA, 0 < A < 1 [26]. Kronrod's idea together with the results 
of Barrucand and Monegato urged a lot of mathematicians to consider Stieltjes 
polynomials for more general weight functions, to study the interlacing properties 
of the zeros and to construct extended positive quadrature formulas. Among them, 
we mention Gautschi and Notaris [16], Gautschi and Rivlin [17], and the recent 
papers of Peherstorfer [34] and of the first author of this paper. For a more complete 
history of the problem under consideration, the interested reader may consult the 
exhaustive surveys of Gautschi [15] and Monegato [28]. 

Nevertheless, the interpolation process based on the zeros of Stieltjes polynomials 
and/or the extended interpolation process that uses the zeros of the polynomials 
K2n+l = PnEn+l have received little attention. Recently several authors, following 
a different approach than Kronrod, constructed extended interpolation processes 
starting with the zeros of the product of two or three orthogonal polynomials with 
respect to different weights. By using the method of additional nodes they proved 
convergence theorems in uniform and weighted LP norms (see for instance [4, 5, 6, 
20, 21, 32]). 

The reasons for the absence of results on interpolation processes based on the 
zeros of En+? and/or PnEn+l are first of all the fact that in literature there are 
no accurate bounds available for the polynomials En+,, and in second place that 
information about the distribution of the zeros of En+i and/or PnEn+l is very 
poor. The interlacing property of the zeros of En+, with those of Pn allows to 
obtain easily upper bounds on the distance between two consecutive zeros, while 
the respective lower bounds are harder to find. 

The first result in this paper is an accurate pointwise bound of the polynomials 
En+i. This bound shows an "opposite' behaviour of En+, with respect to that 
of the Legendre polynomial Pn. In fact, in every closed subset of (-1, 1), En+1 is 
unbounded (with respect to n), while it is bounded near the endpoints +1. As a 
consequence of this fact, the polynomial PnEn+l results in being bounded in [-1, 1] 
and it seems to have a behaviour similar to that of the Chebyshev polynomials of 
the first kind. 

Then we will prove that bQth the zeros ,,,+j = COS 0,n+l of En+, and those 
Yk,2n+1 = COS Ok,2n+1 of K2n+l = PnEn+l have an "arccos-type" distribution, i.e. 
their cosine arguments satisfy 

Io0t,n+1 - O0t?l,n+lI - J0k,2n+1 - 4k+1,2n+1I n1 

These results are explained in ?2 of this paper. In ?3 we consider the behaviour 
of the Lagrange polynomial Ln+lf which interpolates a preassigned function f at 
the zeros of En+, We will prove that this interpolatory process is optimal in the 
sense that the n-th Lebesgue constant IjLnll = supljf11=1 11Lnfjj, where 11 11 is the 
sup-norm, is -- log n. We also observe that this result seems surprising, since En+, 
is unbounded in (-1, 1), and on the other hand a "good" distribution of the zeros 
generally doesn't imply IjLn jj log n. 
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We also prove some convergence theorems in weighted LP norms by estimat- 
ing the interpolation error by means of the best weighted one-sided approximation. 
Moreover, we prove that the Lagrange polynomials L2n+lf interpolating a function 
f at the zeros of PnEn+i have optimal Lebesgue constants (i.e., O(logn)). There- 
fore, the zeros of the Stieltjes polynomials E,+1 have the property of improving 
the interpolatory process based on the Legendre zeros, which, as well known, has 

Lebesgue constants -?. 

2. INEQUALITIES FOR STIELTJES POLYNOMIALS 

For the Stieltjes polynomials En+,, we use the normalization (cf., e.g., [28]) 

?n En+i (cos 0) = atO,n cos((n + 1)0 + aoi,n cos((n - 1)0 2 
(2) a.? ,n COS 0, n even, 

21at n+1 ,n) n odd, 

where 

(3) aO,n = fo,n = 1, Zo+,nfv-L,u,n = 0, v = 1, 2,..., 
/-=o 

(4) fV'n = 1- 1 -+2+1 fv-1,n, ) 7 

and 
22n+ ln!2 

n=n vr (2nr+? )V 

In the following we denote the zeros of the Legendre polynomials Pn by x>,n = 

cOs 4lv,n, v = 1 ... , n, and the zeros of the Stieltjes polynomials En+, by (,u,n+l = 

cOs 0JL,n+l, At = 1, . . . n + 1, ordered by increasing magnitude in both cases (we will 

frequently omit the index n where the meaning is clear from the context). 

Theorem 2.1. For n > 1, there holds 

(5) En+i(x)l < 2C0* 2 +?1 j -X2 ? 2 Xl ?X? <Xnl 
IF 

where C* = 1.0180.... For x E [-1, x1] U [Xn, 1], there holds 

(6) lEn+i(x)l < 25 + e(n)) 

film,oo e(n) < 0, e(n) < 30. Furthermore, 

(7) En+1(1) > 
2 

n > 1. 3 >1. 

According to Theorem 2.1, rough bounds are 

(8) lEn+i(x)l < 2C* X2 + 57, -1 < x <1 

and 

whe C isaEn +pi(X) < C os tn -t < x <. 

where C is a positive constant. 
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The best bound for Stieltjes polynomials in literature is (cf. [27]) 

4 
En+1(X)j < -v -1 < x <1. 

7n 

While this bound behaves uniformly on the whole interval [-1, 1], the bounds in 
Theorem 2.1 are smaller by a factor n-1/2 at the endpoints if compared to 
the interior of the interval. This conforms to recent results about the asymptotic 
behaviour of Stieltjes polynomials [10], namely that the formula 

(10) En+,(cos0) = 2 scos { (n+ ?2) 0?} + ?o(?n) 

holds uniformly for c < 0 < 7r - c. On the other hand, a comparison of (5) and 
(10) shows that in fixed closed subintervals of (-1, 1), the bound (5) can at most 
be improved by the factor C = 1.0180.... It follows from (7) that the order in n 
of (6) and (8) is also unimprovable at the endpoints ?1. 

The associated sin-polynomial 

- en(0) = aoO,n sin(n + 1)0 + al,n sin(n - 1)0 2 

?+..? 
n -,,n Sin30 + a n,n sin , n even, 

aon - sin 20 n odd, 

is important in connection with a class of polynomials Gn considered by Geronimus 
(cf. [18]; cf. also [28, 34, 36]). The connection is (cf. [28, 36]) 

(11) sin0Gn(cos0) = en(0). 

As a byproduct of the previous theorem, we also obtain bounds for the Geronimus 
polynomial Gn. 

Theorem 2.2. For n > 1, 

JGn(X)1 < 2C* n?1 1 + 2 
xi <x< 

where C* = 1.0180.... Moreover, there holds 

JGn(X)1 < C (n +1), -1< x< 1, 

where C < 35. 

With regard to the application for extended interpolation in ?3, it is important 
to obtain accurate upper bounds also for the product PnEn+i. Recalling classical 
results about the Legendre polynomials Pn, we observe from (7) and (10) that En+, 
has an "opposite" behaviour with respect to the term 1- .x2. Thus, PnEn+1 is 
very similar to the Chebyshev polynomial T2n+l of the first kind (see [27] for related 
numerical results). More precisely, we have the following corollary. 

Corollary 2.3. For n > 1, there holds 

lPn(x)En+l(x)l _< C) -1 < x < 11 

where C < 55. In particular, we have 

lPn(x)En+l(x)l < 7, xi < x < Xn 
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Let the zeros of K2,+, = PnEn+I be denoted by y, = cos bL, v = 1,... , 2n + 1, 
ordered in increasing magnitude, and let yo = -Y2n+2 = = -&n+2 = -1. 
Sharpening the interlacing result of Szego [36], we prove a lower bound for the 
distances of consecutive zeros of K2,+,. 

Theorem 2.4. For n > 1, 
I 

~~~~~~~~1 
lim inf (2n +1)( >t),+ 1) > v-, v0, ... ,2n +1,, 
n-oo 20 

and 

lim inf (n+1) (Olt -Ott+ 1) > 
1 

f ,=O0,... ,n+l1. 
n-oo 20 

3. LAGRANGE INTERPOLATION 

We write f c LP(E), E C [-1, 1], I < p < oo, if 

Ilf ILP(E) = AIf (x)IP dx) < oo, 

and we set LP = LP([-1, 1]), If lip = lf IILP- 1, 11) In the case p = ox, we keep the 
previous notation by setting lif IIL(E) = SUPxEE If (x) 1, E C [-1, 1] . In the following, 
C denotes a positive constant which may be different in different formulas. With 
a being a weight function and 1 < p < ox, we use the notations 

m(f)a,p = i-nf 1I[f - q]llp 
qEIP, 

and 

FM(ff)ap =inf{II[q -q-]olIp, qi E Pm) q < f ? q+} 

for the error of the best algebraic weighted approximation and the best one-sided 
weighted approximation. If cr o 1 in [-1,1], we write Em(f)p and ?m(f)p. Now 
let Ln+l (f) be the (n + 1)-th Lagrange polynomial interpolating f at the zeros of 
En+, The following theorem holds. 

Theorem 3.1. For any continuous function f we have 

lIf -Lfn+lf lloo < ? logn&6n(f),o 
where C is independent of n and f. 

Let u be a Generalized Jacobi (GJ) weight, defined by 
r 

tl(X) = rl Itk - X|k, -Yk > -1i -1 = to < tl < ... < tr-, < t'r = )ixi < 1. 

k=O 

We state some convergence theorems of Ln+lf to f in the LP norm with weight u. 

Theorem 3.2. Let u E LP with 1 < p < oo. Then for any continuous function f 
we have 

(12) 11[f-Ln+lf]Ullp < C-En(f)0o1 
where C is independent of n and f. Furthermore, if uV/- E LP and (uy@)>1 ' EL 

So(x) = 1l- x2, p-1 +q-1 = 1, 1 < p < oo, then, for any function f: [-1,1] -R 

which is bounded and measurable, we have 

(13) 11[f -Ln+lf]ullp < C&n(f)u,p, 
where C is independent of n and f. 
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The assumptions about u which were made in Theorem 3.2 to obtain (13) are 
stronger than those to obtain (12). But (13) is better than (12) (if f is continuous) 
because &n(f)u,p < IIulIpgn (f)o and &n(f) o = 2&6n(f)c,. Moreover, bounds of 
the type (13) are useful to estimate the error 11[f - Ln+lf]ullp for an interesting 
function class, more precisely, the class of functions f which are locally absolutely 
continuous in (-1, 1) (f E ACi0c), which generally need not be bounded at the 
endpoints ? 1, as the example log(1 + x) shows. For such functions, we cannot use 
(12), but the following theorem is useful. 

Theorem 3.3. Assume uAf3 E LP and (u/)-'1 E L , 1 < p < ox, and p1 ? 
q-1 = 1. Iff fE ACIO, and f'(,2/Pu c Ll, then 

(14) 11[f - Ln+lf]ullp ?n l ll f ? IILP[(41 >n+01 + C 2pf ' /U|L1 (I'), 

where In? = [-1,1]\(4, n+1) and the constants are independent of n and f. In 
particular if f'pu E LP, then 

11[f -Ln+lf]ullp ?< 
c 

En-1(f/)u,p 

where C is independent of n and f. 

For example, if p = 2, u(x) = 1 2 and f(x)' = log(1 + x), from (14) we 
obtain II[f - Ln+l(f)]u12 = Q(n-1). The interested reader may find estimates of 
En (9)gU with a GJ weight u and g E AC1O, in [3]. 

The case p = 1 is interesting in the applications, because it is connected with the 
error of the product quadrature rule. Estimates of II[f - Ln+l]ulil in the L1 norm 
and the same weight u are only possible under strong conditions on the weight u (see 
for instance [7, 24]). From the previous theorems, we can derive better estimates 
than (12) when p = 1 by some assumption on the weight u. For instance since 

11[f - Ln+f]ulull K< -V/UiJll -Ln+lfV4112, 

if (u~o)?1 E L1, using (13) we obtain 

11[f-Ln+lf]ulll < C&n((f)ju,2. 
If in addition the function f is locally absolutely continuous, then we can use 
Theorem 3.3. 

Now we consider the behaviour of the Lagrange polynomial L2n+lf interpolating 
the function f at the zeros of K2n+1 = PnEn+i. We state the following theorem. 

Theorem 3.4. For every continuous function f we have 

f - L2n+lllfoo < C logng2n(f)oo, 

where C is independent of n and f. 

For a GJ weight u, we set u-(x) = 
H,Jk<O Itk -xjk and u- _ 1 if yk > ?, 

k = 0, . .. , r. With this notation, we state the following theorem. 

Theorem 3.5. Let f be a bounded and measurable function. If u E LP with 1 < 
p < ox, then 

(15) 11[f-2n+lf]ullp < C&2n(f)u ,p- 

If f is continuous and u C L1, then 

(16) 11[f-L2n+lf]ull <? CS2n(f)oo> 



STIELTJES POLYNOMIALS AND LAGRANGE INTERPOLATION 317 

Furthermore, if f is bounded and measurable, u E LP and u-1 E Lq, p-1 + q-1 = 1 
and 1 < p < ox, then we have 

(17) 11[f -L2n+lf]Ullp <? C2n(f)u,p, 

where the constants are independent of n and f. 

By comparison of Theorem 3.2 and Theorem 3.5 one can see that the behaviour 
of ?2n+1 is better than that of Ln+1 While (16) is the analogue of (12), we can 
see from the proof that the estimate (15) for Ln+1 is only possible if 1 < p < 4. 
Moreover, the inequality (16) can be replaced by 

1[f -2n+lf]ulll < C&2n(f)u,2, u E Le 
using the previous argument. Finally, we state the analogue to Theorem 3.3. 

Theorem 3.6. Let u ELP and u-1 E Lq, p-1 + q-1 = 1 and 1 < p < oo. If 
f E AC1O, and f'(p2/Pu E L1, then 

11[f - L2nf]ul < Jjf'.(PUHLP(Y,Y2n+1) + C llfl.p PUjL1(I'), 

where In = [-1, 1] \ (Yl, Y2n+ 1) . If in addition f '(pu E LP, then 

11[f-?2n+l f]ullP < ? 62n-1(f )uw,p 

where the constants are independent of n and f. 

4. PROOFS 

In the sequel, we write An Bn for two expressions depending on a common 
parameter n if 0 < Ci < IAn/BnI < C2 <00, where C1, C2 are independent of n. 

Let En+, be defined as in (2), with the coefficients ac,n as defined in (3); let 
m = m(n) = [(n + 1)/2j. First, note that the bounds in ?2 can be verified easily 
in the cases n = 1, 2, such that we can assume nr> 3. 

Lemma 4.1. Let the sequence (av,n) be defined as in (3). Then 

(18) 1+ < E < 

Here the prime means that am,n has to be replaced by 2 am,n if n is odd. 

Proof of Lemma 4.1. Szegb [36] proved that 
00 

(19) ao,n = 1, av,,n < 0, v = 1, 2, ... E atv,n = ?. 
v=O 

In [10], it was proved that for the product 

(o,n + ? * * + aik,n)(fO,n + * + fk,n) = 1 + Rk,n, 

where fv,n is defined in (3), we have 

(20) Rk,n < 0- 

Using a lower bound for fv,n following from [10, (40)], 

f v, n > 
2 (2v)! v < ml 

3f22vV 
_ 
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after some elementary estimates we find 

(21) fo,n + + fm-ln > 2f O dx 2 _1), 
/3irJ V2x?+1 /37r 

and obtain the upper bound in (18). 
For the lower bound, let p be an integer > 1. We consider the product, for 

arbitrary k E N, 

(ao,n + ? * ?+ ak,n) (fO,n + * + fpk,n) 

k v pk k k v 

-= S fw-bL,na,,n + 5 5 fw-,t,na,t,n + 5 av,n fpk+l-,,n. 
v=O /-t=0 v=k+l A=0 v=1 pt=l 

By (3), the first term is equal to 1, and the second term is greater than 0. Therefore, 

(ao,n + ? * *+ ak,n) (fO,n + * + fpk,n) 

k v 

(22) > 1 + E av,n fpk+l-jt,n 

v=1 ,u=l 

> 1 - f(p-l)k+l,n kai,n + 2ai2,n + * ? kaik,n. 

Now let k = m = L(n + 1)/2j. We again obtain, by elementary estimates, from [10, 
(40)] 

/7 1 | 2n~~~~+ 17 
f(p-1)m+1,n -P + 1)n + 34 

Analogously as in (21), we use [10, (40)] for upper bounds of f, and estimate the 
sum in an elementary way by an integral, which, after straightforward calculations, 
leads to 

1 
fO,n + ??+ fpm,n < ? V2p(n?+ 1) + ?1 + 2 

We need the following lemma, which will be proved later. 

Lemma 4.2. Let the sequence (oavn) be defined as in (3). Then, for k < m, 

|al,n +2a2,n +3al3,n +***+kalk,n| _< - [ +-In (k+ 2)+3] 

We observe that <n Zm=O /a for sufficiently large n, is bounded from below 
by a constant less than 

A(p) = 
2p-__ 

The function A has a maximum for p = 5, and we continue the proof with this 
value. Plugging the explicit bounds derived above into (22), after lengthy but 
straightforward and elementary calculations we obtain the lower bound for n > 
2600. For 1 < n < 2600, we explicitly compute the values >=? Em 0 'a 
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Proof of Lemma 4.2. Using (19), we obtain 

lai,n + 2ai2,n + * + koak,Xn 

k k k v-1 00 k v-1 

-a = - 
- 

u,n- 
au,n < E E a_,n 

v=l,uL=v v=l / t=0 ,ut=k+l v=l ,ut=O 

and the last inequality follows again from (19). For k < m, we obtain 

k v-1 k v-1 \ -1 k 

aE/-t,n < f t{ ,n) < 2/-7 E,[-1] +l 1]- 
i-=1 /-=O ___V= 

where the first inequality follows by (20) and the second by the same method as in 
(21). We estimate the sum by 

Z[ 2v'-f v~i~? k+1 [V2=vl 1] (v'3 ( 1)-+ 2 dx 

and obtain the result by some straightforward computations. El 

Lemma 4.3. For n > 0, 

IE'+() < (10 + e(n)) (n + 1)21 

limnlno c(n) < 0, 6(n) < 12. 

Proof of Lemma 4.3. We obtain from (2) that 

2 m 
E (1) = - '(n + 1-2V)2a 

nv=O 

< 1(n + 1)2 {: av,ni- I : 
f vav,n} 

For an, we compute the lower bound 

(23) -yn > 4 n?3 

An application of Lemma 4.1 and Lemma 4.2 then leads to the result. C 

Lemma 4.4. For n > 1, 

0 < En+ 1(1) < (6+E(n)) (nr+ 1)4, 

limn1oo e(n) < 0, 6(n) < 8. 

Proof of Lemma 4.4. Using (2) and [35, Exercise 1.5.6], we obtain 

2 r- 
En+j(1) = cyv {(? 1-a2v)4 -(n + 1 - 2v)2} n ~3-yn S , n 

- 2 
?1)4 

_ (m 2 )4 

(n + 1-2v)2 
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For the first sum, we have 

(1 - 
4 

) = 2v )+6(2v 
2 

2v )3 (2v )4 
(i 

I 1-4 + 6 (i4) + 

and for v < n+, 

6( 2v ) 4(2 ) = (m2v)) {6 _ 8; } > O 

Therefore, in view of (19), we have 

2( + 1)4 (1-;1)4 av, 

< 3 (n + 1){ E av,n - n Z+ E vavn} 

We further estimate this term in a straightforward way, using (23) as well as Lem- 
mas 4.1 and 4.2. Furthermore, we obtain 

r n -i 1 _ _~~~v _ _ _ M 1 _ _ _ _ _ 

S ( 1- 2V)2 ( n - 4i) + I = ( + 1)2 ZV 
i (1 n + -1 2v) 

m-1 

> ( 
I 

2E v,n > ?, 

(nm+ 

1)2 

0,O 

such that this term can be omitted in the bound for 
En+1 

(1). F 

Proof of Theorem 2.1. Let n be even; for odd n, only minor modifications are nec- 
essary. Let 0 < 0 < 7r. We have 

En+, (cos 0) =- Re {ei(n+1)0 a, e-2ivO } 

Since, in the following equation, both series are convergent, we can write 
n 
2 00 00 

-2ivO _ c -2ivO - >v6J 
V=0 V=0 =n+1 

From [10], we recall 

-Re {ei(n+) a,ne- 2 Qn (cos 0.) { [Qn (cos _)]2 + [Pm(cOs 0)] } 

Here Qn, 0 < 0 < r, is defined by (cf. [36]) 

liM (Qn (X + i6) + Qn (X- i6) ) =2 Qn (x) , x E (-1,1 

where, for complex z , [-1, 1], 

Qn(z) 1 In( ) dt 
21 z-t 

is the Legendre function of the second kind. 
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Durand [9] proved that the symmetric function 

sin0 {[-Qn (cos 0)] + [Pn(cos0)]} 

is monotonically increasing for 0 < 0 < 2, and that 

sin0 { [-Qn(cOs 0)] + [Pn(cos0)]} <( F (n + ) 

We obtain that for 0 < 0 < 7r, 

sin0 Qn(cos 0) I 2 2 

and that for On <? 0 <b )1 (Xv = cosb), 

sinO { [-Qn(COS 0)] + [Pn(cos0) } > s sin on [Qn(cOsqOn)]2. 

Hence, we can estimate 

Re {e(n+1)6 > av,ne F + Sin0 [ Si QnQ(cOs qn)]2I 

It is well known (cf. e.g. [2, p. 151]), that the nodes x,,, ... . Xn,n of the Gaussian 
quadrature formula Q[f] = v1 aGnf(X,n), defined by f1 p(x) dx-Qn[f] = 0 
if p is a polynomial of degree < 2n - 1, are the zeros of Pn, and the weights are 
represented by 

G _ 2Qn (Xv,n) -2 
(24) av -n P ,,) (1- ]2)[p 

A lower bound for anGn has been proved by Forster [12, p. 130], 

(25) FnGn > C* + 1 sin On i 

where C* = 1.0180.... Invoking (24) and (25), we obtain 

SinO Qn (COS On)]2 > 1 _F 

which leads to the first term in the inequality (5). 
For the second term, we estimate 

lan+i,ne io + an +2,ne + ... 

< jan+1,nj + lan+2,nl + ao. = RO,n + a1,n + * + %n,ni 

where we have used (19). In view of Lemma 4.1 and (23), we obtain 

(26) 
2 ao5 1 (26) -(t9 ? n +a?n + +an,n) < 1+- < 2. 

In the following, we prove the inequality (6). For symmetry reasons, we only 
need to look at [xn, 1]. Since the zeros of Pn and En+, interlace, there exists 
precisely one zero (n+1 of En+, in [xn, 1]. En+, is monotone in [(n+1, 1], negative 
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in [xn, (n+1], has precisely one local minimum x* E [xn, 1] and is convex in [x*, 1]. 
Therefore, the bounds 

En+l( 1 + n+1 ( 1) (X-1 < n+1 (x) < n+l(1 ) X E [Xn ) 1] 

are valid. Thus, we obtain 

(27) lEn+1(x)l <? max{En+i(1), (1 -xn)En+1(1) -En+(1)} 

for x E [xn, 1]. By (26), we have 
n 

2 2 51 
En+1(l) = - E av,n < 1+ <2. 

vn =O 
v6r 2 

The other part in (27) is larger, namely we obtain 

(1 - xn)En+1(1) - En+1(1) < (1 - Xn)En+1(1) < 25 + 6(n)) 

limnO (n+ ) < 0, er(n) < 30, from Lemma 4.3 and a classical estimate for (1- xn) 
(cf. [37, Thm. 6.21.3]). 

The lower bound follows from the lower bound in Lemma 4.1. D 

Remark. For the associated sin-polynomial en, we have en(0) = 0. By (11) and the 
interlacing property of the zeros of En+, and the Geronimus polynomial Gn (see 
[36]), we obtain that en(0) is symmetric and has n + 2 zeros in [0, 7r], but none in 
(0, On+i], where (n+i = COs On+1 is the largest zero of En+,. From the symmetry 
we obtain Ien(01)l = en (On+1)L. The derivative en (0) (with respect to 0) is for 
0 = arccosx an algebraic polynomial of degree- n + 1 in x with positive leading 
coefficient. We have for m = [(n + 1)/2j 

m m m 

(28) 2 en(?) = X '(n + 1 - 2v)a, n = (n + 1) av,n -2 SE Iv,n 
v=O v=1 v=O 

with the aforementioned definitions of An and ao,n- From the latter, it follows that 
the first sum is positive and the second is negative, hence 

en (0) > 0. 

A simple argument shows that en (0), for 0 E [O, On+1], is positive and lies under the 
tangent in the point 0, 

len (0) I <_ 0en/(0) <_ On+ en (?) 

Now, denoting the largest zero of Pn by xn = cos On, we have 

On+1 < On < nr 

where the last inequality is from [37, p.139]. We estimate the first sum in (28) by 
Lemma 4.1, and the second by Lemma 4.2. After some elementary computations, 
we obtain for 0 c [O, On+i] 

len()I< 11. 

Furthermore, starting from (for even n, the case n odd can be treated analogously) 

e~ 2 I j 6(n+1) 2 ] 

en (0) = Im ei(n+1)0EO I:a e- 2ivO 
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the same bound as in Theorem 2.1 can be proved for the associated sin-polynomial 
en (0) (C* as in Theorem 2.1), 

Ien(0)I < 2C* sinO + 2, On < 0 < )i. 
iF 

Proof of Theorem 2.2. We obtain the first inequality from the above remark and 
(11). For the second inequality, we use bounds for xn [37, p. 122] and the same 
argument as in [30, (i)] to obtain 

IGn(x)I < 12 max IGn(x)I < 35 (n + 1). O 
Xi <X1<Xn 

Proof of Corollary 2.3. For Pn, we use the well known bounds 

(29) 1P1(cos0)I < 1, IPn(cos0)I < irnin' 0 < 0 < , 

and obtain the inequalities by using Theorem 2.1. Cl 

Proof of Theorem 2.4. We shall treat the following cases separately: 

(i) liminf(2n+1)(Oi-)+li) > 0.16,iv+= -1, > 0.05, 

(ii) limmif (2n +1) (01v-Ov) > 0.16, v= 2, . .., n, 
(iii) liminf (2n+l1) (01-01) = liminf(2n +1) (o/n- On+1) > 0.05, n--oo n-oo 
(iv) liminf(n+1)(7r-01) = liminf(n+1)0On+i > 0.13. 

nl- oo n-4o0 

We will first prove (i); the proof of (ii) follows in an analogous way. We obtain from 
Taylor's theorem 

(30) 

Fsin0v+iPn(cos0v+i) = (v - O,v+1) {sin2 * Pn (cos) - cos - P ) 

where Ov+1 < 0* < 5bv Now, using the bound (29), we obtain 

cos q*Pn (cos q*) 1 1 12n irVA 
2, sinq* - 2qrnsinb* ir V) + n+ + lJ 

since sin q* > sin $n,n > I (i-n+1)' (cf. [37, Thm. 6.21.3]). For the other term 

at the right-hand side in (30), we use the well known equality Pn' - p( for the 

ultraspherical polynomial P 2 (cf. [37, (4.7.17)]), and obtain from [13, Corollary 
1.8], that 

I3n 3P \ (o~b)I~ 2 F(n +1) sin 2O*p( 
2 ) (COS ?O*) I < r(3 2+l). 

Szeg6 proved in [36] that 

Qn (cOs 0)En+i (cos 0) + Pn (cOS 0)en (0) > 1 0 <0< ir, 

and it follows that 

sinOv+iIP(cosV+i)I > 2 si-n+ . 
w e(v11 



324 SVEN EHRICH AND GIUSEPPE MASTROIANNI 

Now, using the remark after the proof of Theorem 2.1, there follows after straight- 
forward calculations 

01./- Xv > 0.8(1 + El(n))-l, v =1,. . .,n-1, 

Ov - O+l > ( 1n)1 , n 

where limnoo 6i(n) < 0, el(n) < 2.4 (n > 3). 
For (iii), we can proceed similarly as in the proof of (i). Here we use 

Pn (cos 01) -(01 - b1) sin * Pn (cos b*) 
where 01 < 0* < 01. Now 

Oi- > IPn (COS 0i) > 2 1 2 >0.025 
( -Pn (cos0) > (,7 - 1) len(01)1 n(n + 1) n 

For the proof of (iv), for symmetry reasons again, we only have to consider 
lim infn+o (n + l)On+i . Since En+, is monotone and convex in [(n+l, 1], it follows 
that 

1- (n+l > E>n+, (1) > 0.0376 (n + j) -2 (I + 1E2 (n))-l 

limn-- E2(n) < 0, 62(n) < 72 (n > 3). Now it follows with some simple trigono- 
metric calculations that 

0.137 
On+l > (+1 1+3(n)) 

limnoo E3(n) < 0, E3(n) < 7.6 (n > 3). 

Lemma 4.5. Let Yv Yv,2n+1 be the zeros of K2n+l PnEn+l. Then 

(31) < ln v = 1, ... 2n 
in 

for a positive constant C. Furthermore, 

(32) )< ' r v = 1, ... ,n+ 1. 

Proof of Lemma 4.5. We recall that the zeros of En+, are used as additional nodes 
for the Gauss-Kronrod formulas. For their weights A GK and BGK+1 in (1), we 
obtain from [10, (93), (94)] 

(33) v>,r =za>vn + Pn2(x)En+l(Xv) 

(34) - GK2bl,., +l (34) gM~t,n+l P ( )Et u= ,... n + 1, 

where a G v = 1,..., n, are the Gaussian quadrature weights. Now, we use the 
positivity of the weights in (33) and the bound [14, Corollary 1] to obtain 

2n + I xv -x. 

Using [11, Theorem 2.1] for A = 1,..., I n+T]J we obtain 
(3) GK < G1 +an<2 < 
(35) ~B GK~ ? a Gn+ aG_ < 2aG_ < 1-r x. 
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We argue analogously for ,u = [+1 + 1,... ,n + 1, and, observing 1- x 

we obtain (31). Using (34), (35) and a standard bound for Pn (cf. [37]), 

we also obtain (32). E 

We now proceed with the proofs of the results in ?3. In the following, we use 
some properties of the Hilbert transform H(f), defined by 

H(f, t) = lim dx, f E L . 
E-+OJIx-tI>E x - t x 1 

We recall that if G E L? and F log+ F E L1, where F and G have compact support 
K, then we have 

(36) GH = FH(G) 

see, for instance, [31]. Moreover, let u E V and v E V be two GJ weights with 
u < v, u E LP and v-1 E Lq 1 < p < oo p-1 + q-1 = 1, then 

(37) IIH(f)ullp < Cllfvllp, 

see, for instance, [29, 38]. 

Proof of Theorem 3.1. It is sufficient to prove that 

ILn+1 (f, x) I< C lognllflloo -1 < x < 1. 

Let d be chosen such that (d < X < d+l. Let also Ix -dj <- d+1-dxl (the other 
case can be treated analogously). Now 

ILn+1(f,X) I 
En+1() (X d) E'+1(x) f()x ) - 1 + 12. 

v= 
n 

In view of Theorem 2.4, we can use [20, Lemma 4.1] and obtain 

12 < ClognIIfII0O E (x)n (W 1- _ + n-l)-l/2(?x + 

We invoke the bound (9) and obtain 

12 < Clognllflloo, 

where C is a positive constant. Next, we use Lemma 4.5 to obtain 

El 2~_dE 

I El< E' +((d) lif I)Oo < C n| TAi. n+l(W lif Ilo)0 

where (d < < (d+l. Applying the weighted Bernstein inequality (cf., e.g., [30]), 
observing '/ 1- 2- '/ 1- ~2, and using (9) we obtain I1 < C I f I Io for a positive 
constant C. LIg 

Proof of Theorem 3.2. Let q? E Pn such that q- < f < q+. Using [30, (25)], we 
have 

- [f-Ln+if]ufIp ? [f - q]uIIp + IILn+1(f - q) ullp 
(38) < II(q+-q-)uIIp + CIILn+1(f-q ) ullLP(An), 
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where 
r-1 

An= [-1 + an-2, 1-an-2]\ U (tka- 
a 

k=1 

a > 0 fixed. We define 

G=sgnLn+l(f-q-), G1 = ILn+1(f-q-), F- = GGP-1 

and 

ir(t) E 
j En+1(X) En+ (t) UP(x)F(x) dx. 

Recalling Lemma 4.5, we obtain 
n+1 f (W- q- _( 

-)uL~P(An) E2+ f(k)I 

k=1 

Using [19, Theorem 2.2], we have 
n+1 2 q - t 

IP < C E (q+ -q)(Ik)r7 ( Ik)| < Cq 17r(t) I dt 
k=1 

n n 1 Vn ~~~~~~~~(p(t) 
Using again [30, (25)], we obtain 

IP < j (q q )(t) (IH(En+juPF, t)I + IEn+j+(t)H(uPF,t)D) dt 
An V p T 

where H is the Hilbert transform. 
Assume that f is a continuous function, u E LP, 1 < p < ox. We have 

+ ) [ IH(En+1UPFi t) I dt + En+ i (t) I Hur t t 
IP<CI_ dt + IH(uP] )I7 dt 

[JA nf(p0(~t) ]A n mp (t)IJ An An 

=: cIIq+ -q- 11 0o (11 + 12). 

To estimate I1, we observe that En+,uPF and (V'-)-1 are bounded functions with 
respect to x E An) such that we can use (36). Then, setting gi = sgnH(En+1uPF), 
we obtain 

(39) I ? 1 i JA IEn+1(t)uP(t)F(t)I IH(g,( IW-1 t)I dt. 

Using (9) and the H6lder inequality, we obtain 

1 <? C I UVH(91(V)-) lp UP Iq 

C IILn+(f - q-)uIIP-1 

since IIu8 H(gj(/)-1)IIp < o by [30, p. 676]. 
Similarly, we set 92 = sgn H(uPF) and estimate 

12 < JIH(uPF, t) Idt < J uP-1 (t)F(t)l I u(t)H(92, t) Idt 
An An 

< C IuH(92)I IIILn+1 (f - q-)uIIP1 C IILn+1(f -q)uIIP-1 

since again IIuH(g2)IIp < o by [30, p. 676]. In conclusion, we have 

IILn+1(f-q-)uIIp < CIIq+-q-Illo. 
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Recalling (38), taking the infimum of q? and by inf Iq+- q-Iq c, q- < f < 
q+, q? EIPn} = 2I n(f)o, then (12) follows for 1 < p < oo. 

If p = 1 and f is a continuous function, starting from (39) it is easy to prove 

I(g91 )1I ,- t)I < IH(gi,t)I, -1 < t < 1, 

and, using [31, (4)], 
~~~~~~~~~~~1 

11 ? futH(,t ?Cfu(t) log+ u(t) dt < oo. 
An- 

In a similar way, we obtain 

12 < C u(t)log+u(t)dt < 0x. 
-1 

Assume now that f is a bounded and measurable function, uv/ E LP and 
(U >) -1 E Lq p-1 + q-l = 1, 1 < p < oo. We have 

|| Ln+1 (f- q-)uII P(A) -)uLP (An) 

+ f (q+ - q)(t) E+(t H(urFtt)f d 

+ n | ( o (T) IHEn+juP)FjH(Pr t) I dt 
An 

JA m 
Jn+ 

t)I(Hut)t 
Id 

= 1 + 12. 

First, we use the H6lder inequality and obtain 

Ii< KI(q+ - q-)uIIp 
I 

H(En+lPuF) 
u ,fl(~p q 

Using (37), thereby taking (u/5)-1 for the weight function both times, we obtain 

H H (En+1uPF) < C 
E 

1uP-lr7 < C IILn+1(f --)uIIP-1 

Finally, we use the same argument for 12 and obtain 

IILn+1(f- q)uIIp < C I(q+ -q-)uIIp 

The inequality (13) then follows recalling (38) and taking the infimum with respect 
to q+. 

Proof of Theorem 3.3. Let ql be defined as in the previous proof. Let 

{f(), X < 1 
fn (X)= f(x), 6 < x < En+l, 

f(t(&n+j) i n+l < X. 

We have 

1[f- Ln+lf ]uIIp ?< 1[f - fn]ullp + 11[fn - Ln+1+fn]uIIp 

By [23], if f E ACi0c and f'op2/pU E L1, we obtain 

-1[f fn]ullp < C Ilf '/p2/ L1(I'). 
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We observe that fn is a bounded and measurable function, and, using (13), we 
obtain 

II[fn - Ln+lfn]ulIp ?< Cn(fn)U,p 
By [8, Theorem 2.1] (see also [23]), we have 

C 
' (fn)U,P < nlIf' (puILP[lL,,n+lf 

If f'(pu E LP, then 

lif'tc2/p uIIL1(It ) <? - If'(uIIp n 

(see [23]). Then, 

1I[f - Ln+lf]uIIp ?< ? If'(puIp. 

Now the theorem follows in a standard way. O 

Proof of Theorem 3.4. Recalling Lemma 4.5, the proof of Theorem 3.4 follows the 
same line as the proof of Theorem 3.1. 0 

Proof of Theorem 3.5. Let q? E P2n such that q- < f < q+. We have 

1I[f - ?2n+lf]uIIp < 11[f -q-]fup + I1LC2n+l(f -q )uIIp. 
Using [30, (25)], Lemma 4.5 and the same argument as in the proof of Theorem 3.2, 
we obtain 

1JK 2n+1(f - q )uIpP(A.) < C j (q+ -q-) (t) |7r (t) I dt, 

where 

7r() K2n+1(X) - K2n+1(t) UP (x) AP`(x)dx, 

K2n+1 = PnEn+l and A = sgn(4C2n+l (f -q-)) ?2n+l(f -q-). Assume u E LP. We 
recall the definition u- (x) = Hfk<0 Itk-xIak and u_ 1 if Yk > 0, k = 0, 1,... , r. 
Using the Holder inequality, we have 

j (q+ - q )(t)j7r(t)| dt < jI(q+ - q)u-jILP(An) 11UA 1FILq(An). 
An 

Using the definition of 7r, we now estimate 

IIUu_ 71VLq(An) < 11U_IH(K2n+1uPAPA') ILq(An) + 11UK2n+iH(u A ) IIL_(AU) 

=: I + 12. 

Using (37) with u11 < u-1, u-1 E Lq and u E LP, we obtain 

II < C lIK2n+l (uA)P-1 |lq < C IC2n+l (f-q-)ullP' 

Similarly, we obtain 

A2 t< C 1ieC2n+l(f1-)q-)ullP-v 

Adding the inequalities, (15) is proved. 
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Similarly, we prove (17). In fact, we have 

f (q - q-)(t) 7r(t)l dt < jI(q - q)uIIp + IU1ui7rljq, 
An 

and using again (37) with v = u, we obtain the result. 
Finally, we assume p = 1 and u E L1. We obtain 

ILC2n+1(f- q)UIIL1(An) < C f (q - q )(t)17r(t)| dt 
n 

< IIq - qIL?(An) II7rIL1(An)) 

where 

r(t) I 
K2n+1 (x) -K2n+1 (t) 

Now 

L7rIIL1(An) < IH(K2n+liut)l dt + f K2n+l(t) IH(Ui,t)| dt = 1 +12. 
An An 

Using [31, (4)], we have 

12 < C IH(u,t)ldt < C u(t)log+u(t)dt. 
An An 

Furthermore, we have 

A1 < C I K2n+1 (t)U(t) I IH(g, t) I dt, 
An 

where g = sgn H(K2n+lU). Using [31, (2)], we obtain 

I, < C u(t)log+ u(t)dt. 
An 

Now (16) follows. F 

Proof of Theorem 3.6. The proof is identical to the proof of Th'eorem 3.3. F 
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